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ABSTRACT 

Concurrent vector fields in a Finsler space were first of all defined and studied by Tachibana [9] in 1950, followed by 

Matsumoto and Eguchi [2] and others. In 2004, Rastogi and Dwivedi [4] studied the existence of concurrent vector fields 

in a Finsler space of n-dimensions and showed that the definition of concurrent vector fields in its present form is 

unsuitable. Further, they modified the definition of concurrent vector fields in a Finsler space of n-dimensions. Recently, 

Rastogi [6], defined and studied weakly and partially concurrent vector fields in a Finsler space of three-dimensions. The 

purpose of the present paper is to define and study a vector field Xi(x) in F3, called D-concurrent vector field, which is 

based on a tensor Dijk defined and studied by Rastogi [5,7]. We have also defined and studied weakly and partially D-

concurrent vector fields of various types and relationship between them. 

KEYWORDS: Concurrent vector, Finsler Space, Three-Dimensions 

INTRODUCTION  

In a three-dimensional Finsler space F3, metric function is represented by L(x,y), metric tensor by gij = li lj + mi mj + ni nj 

and angular metric tensor by hij = mi mj + ni nj. The h- and v-covariant derivatives of unit vector fields li, mi and ni are given 

by [3], [8]: 

l i/j = 0, mi/j = ni hj, ni/j  = - mi hj,      (1.1) 

li//j = L-1 hij, mi//j = L-1(-li mj + ni vj), ni//j = -L-1(li nj + mi vj),      (1.2) 

where hj and vj are, respectively, h- and v-connection vectors in F3. We have well-known torsion tensor Cijk in F3, defined as 

Cijk = C(1) mi mj mk – ∑(i,j,k){C (2) mi mj nk – C(3) mi nj nk} + C(2) ni nj nk                            (1.3) 

Rastogi and Dwivedi [4] have given the following modified definition of concurrent vector field in a Finsler space of n-

dimensions. 

Definition 1.: A vector field Xi(x) in a Finsler space of n-dimensions Fn is said to be a concurrent vector field, if it 

satisfies (i) Xi Aijk = α hjk and (ii) Xi
/j = - δi

j, where α is a non-zero arbitrary scalar function of x and y and other terms have 

their usual meaning. 

Recently, Rastogi [5] has defined a third order symmetric tensor Dijk in F3, in the following form: 

Dijk = D(1) mi mj mk + D(2) ni nj nk + ∑(i,j,k){D (3) mi mj nk + D(4) mi nj nk},                   (1.4) 
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where Dijk li = 0, Dijk gjk = Di = D ni, D(2) + D(3) = D and D(1) + D(4) = 0.  

Alternatively, Dijk is expressed as 

Dijk = D(1) mi mj mk + D(2) ni nj nk + ∑(i,j,k){D (3) mi mj nk – D(1) mi nj nk}                   (1.5) 

 Let us assume that there exists a vector field Xi(x,y), in F3 given by 

X i = α li + βmi + γ ni.       (1.6) 

Taking h-covariant derivative [3] of equation (1.6) and using (1.1), we get 

X i
/r = α/r l

i + (β/r – γ hr) m
i + (γ/r + β hr) n

i,     (1.7) 

which by virtue of Xi
/r = - δi

r, gives 

α/r = - lr, β/r = γ hr – mr, γ/r = - (β hr + nr), α/0 =-1, β/0 = γ h0, γ/0 =-β h0, 

α/r m
r = 0, βr m

r = γ hr m
r – 1, γr m

r = - β hr m
r, 

α/r n
r = 0, βr n

r = γ hr n
r, γ/r n

r = - (β hr n
r + 1).     (1.8) 

Further taking v-covariant derivative [3] of equation (1.6) and using (1.2), we get 

X i
//r = li{α//r – L-1(β mr + γ nr)} + mi{β//r + L-1(α mr – γvr)} 

+ni{ γ//r + L-1(α mr + β vr)}     (1.9) 

D-Concurrent Vector Field 

Def. 2.1.: A vector field Xi(x) shall be called a D-concurrent vector field, in a Finsler space of three-dimensions F3, if it 

satisfies 

(i) X i
/j = - δi

j, (ii) X
i Dijk = Ɵ(x,y) hjk,     (2.1) 

where Ɵ(x, y) is a non-zero scalar function of x and y. 

Equations (1.5) and (2.1) by virtue of (1.6) shall give 

Ɵ hjk = mj mk(β D(1) + γ D(3)) + nj nk(γ D(2) – β D(1)) 

+ (mj nk + mk nj)(β D(3) – γ D(1))     (2.2) 

Multiplying equation (2.2), respectively, by mj and nj, we get        

Ɵ mk = mk (β D(1) + γ D(3)) + nk(β D(3) – γ D(1))   (2.3) a 

and 

Ɵ nk = nk (γ D(2) – β D(1)) + mk (β D(3) – γ D(1))                (2.3) b 

From equations (2.3) a, b, we can obtain 

Ɵ = β D(1) + γ D(3) = γ D(2) – β D(1), which means 

2β D(1) = γ(D(2) – D(3)), β D(3) = γ D(1)     (2.4) 
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From the equations given in (2.4), we easily get 

2 D(1)
2 – D(2) D(3) + D(3)

2 = 0     (2.5) 

Hence 

Theorem 2.1.: In a three-dimensional Finsler space F3, if a vector field Xi is    D-concurrent, coefficients D(1), D(2) and D(3) 

are related by equation (2.5). 

Taking h-covariant derivative of equation (1.5), we obtain by virtue of equation (1.1) 

Dijk/r = {D (1)/r – 3 D(3) hr} m i mj mk + {D (2)/r – 3 D(1) hr} n i nj nk 

+∑(I,j,k)[{D (3)/r + 3 D(1) hr} m i mj nk –{D(1)/r + (D(2) – 2 D(3))hr} m i nj nk], (2.6) 

which for Qijk = Dijk/0 gives [5]: 

Qijk = {D (1)/0 – 3 D(3) h0} m i mj mk + {D (2)/0 – 3 D(1) h0} n i nj nk +∑(I,j,k)[{D (3)/0 

+ 3 D(1) h0} m i mj nk –{D(1)/0 + (D(2) – 2 D(3))h0} m i nj nk]      (2.7) 

If we take h-covariant derivative of equation (2.1) ii, we get on simplification by virtue of equations (1.7) and 

(1.8), following relation 

mj mk[β(D(1)/r – 3 D(3) hr) + γ(D(3)/r + 3 D(1) hr) – D(1) mr – D(3) nr- Ɵ/r] 

+ nj nk[γ(D(2)/r – 3 D(1) hr) – β{D (1)/r + (D(2) – 2 D(3))hr} + D (1) mr – D(2) nr – Ɵ/r] 

+ (mj nk + mk nj)[β(D(3)/r + 3 D(1) hr) - γ{D (1)/r + (D(2) – 2 D(3))hr} 

– D(3) mr + D(1) nr] = 0      (2.8) 

Multiplying equation (2.8) by gjk, we can obtain 2 Ɵ/r = γ D/r – D (β hr + nr), where we have used D(2) + D(3) = D. 

This with the help of equation (1.8) gives Ɵ/r = (1/2) (γ D)/r. Hence: 

Theorem 2.2.: In a three-dimensional Finsler space F3, if a vector field Xi is    D-concurrent, it satisfies XiQijk = (1/2) (γ 

D)/0 hjk. 

If we multiply equation (2.8), respectively, by mj and nj, we get 

Ɵ/r = β(D(1)/r – 3 D(3) hr) + γ(D(3)/r + 3 D(1) hr) – D(1) mr – D(3) nr,     (2.9)a 

Ɵ/r = γ(D(2)/r – 3 D(1) hr) – β{D (1)/r + (D(2) – 2 D(3))hr} + D (1) mr – D(2) nr                 (2.9) b 

and 

β(D(3)/r + 3 D(1) hr) - γ{D (1)/r + (D(2) – 2 D(3))hr} – D(3) mr + D(1) nr] = 0,                      (2.9) c 

which when multiplied, respectively, by mr and nr give 

Ɵ/r m
r = β(D(1)/r m

r – 3 D(3) h2)32) + γ(D(3)/r m
r + 3 D(1) h2)32) – D(1), (2.10) a 

Ɵ/r m
r = γ(D(2)/r m

r – 3 D(1) h2)32) – β{D (1)/r m
r +(D(2) – 2 D(3))h2)32}+D (1)(2.10)b 

Ɵ/r n
r = β(D(1)/r n

r – 3 D(3) h2)33) + γ(D(3)/r n
r + 3 D(1) h2)33) – D(3)               (2.10) c 
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Ɵ/r n
r = γ(D(2)/r n

r – 3 D(1) h2)33) – β{D (1)/r n
r + (D(2) – 2 D(3))h2)33} – D(2)  (2.10) d 

and 

β(D(3)/r m
r + 3 D(1) h2)32) - γ{D (1)/r m

r + (D(2) – 2 D(3))h2)32} – D(3) = 0    (2.10) e 

β(D(3)/r n
r + 3 D(1) h2)33) - γ{D (1)/r n

r + (D(2) – 2 D(3))h2)33} + D (1) = 0.                (2.10) f 

From equations (2.10) a and (2.10) b, we can obtain 

(2 Ɵ/r – γ D/r) mr + β D h2)32 = 0               (2.11) a  

Similarly, from (2.10) c and (2.10) d, we get 

(2 Ɵ/r – γ D/r) n
r + D (β h2)33 + 1) = 0               (2.11) b 

Hence 

Theorem 2.3.: In a three-dimensional Finsler space, in case of a D-concurrent vector field Xi,  

(i) coefficients D(1), D(2) and D(3) satisfy equations (2.10) a, b, c, d, e, f 

(ii) Ɵ/r satisfies equations (2.11) a, b. 

Taking v-covariant derivative of equation (1.5) and using results of equation (1.2), we get on simplification 

Dijk//r = B(1)r mi mj mk + B(2)r ni nj nk +∑(I,j,k) B(3)r mi mj nk + B(4)r mi nj nk 

-L-1
∑(I,j,k) [l i D(1){m r(mj mk – nj nk) – nr(mj nk + mk nj)}+ D (2) nr li nj nk 

+ D(3){m r nk(l i mj + lj mi) + mk nr li mj}]    (2.12) 

where 

B(1)r = D(1)//r – 3 L-1 D(3) vr, B(2)r = D(2)//r – 3 L-1 D(1) vr,               (2.13) a 

B(3)r = D(3)//r + 3 L-1 D(1) vr, B(4)r = D(1)//r + L-1(2 D(3) – D(2))vr                  (2.13) b 

Taking v-covariant derivative of equation (2.1) (ii), using equations (1.5), (1.9) and (2.12) and multiplying the 

resulting equation by gjk, we get on simplification 

2 Ɵ//r = D[γ//r + L-1α (mr – nr)] + 2β D(1)//r + γ D//r,    (2.14) 

which leads to 

2 Ɵ//0 = (γ D)//0 + 2 β D(1)//0               (2.15) a 

2 Ɵ//r mr = {(γD)//r + 2 β D(1)//r)} mr + L-1 D α               (2.15) b 

2 Ɵ//r nr = {(γD)//r + 2 β D(1)//r)} nr – L-1 D α               (2.15) c 

Hence 

Theorem 2.4: In a three-dimensional Finsler space, in case of a D-concurrent vector field Xi, Ɵ//r is given by equation 

(2.14) and satisfies (2.15) a, b, c. 
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Similar, to a C-reducible Finsler space Matsumoto [1], the author [5] has defined, D-reducible Finsler space F3 in 

which the tensor Dijk satisfies: 

Dijk = (1/4) ∑(I,j,k){h ij Dk},    (2.16) 

which by virtue of equation (2.1), shall give 

Ɵ hjk = (D/4)[β(mj nk + mk nj) + γ(hjk + 2 nj nk)].    (2.17) 

Multiplying equation (2.17) by gjk, we get on simplification  

Theorem 2.5.: In a three-dimensional D-reducible Finsler space F3, for a D-concurrent vector field Xi(x), Ɵ = (1/2) γ D. 

Taking h-covariant differentiation of 2Ɵ = γ D, we get 2Ɵ/r = γ/r D+ γ D/r, which when compared with equation 2 

Ɵ/r = γ D/r – Dr – β D hr, gives 

D (γ/r + β hr + nr) = 0    (2.18) 

From equation (2.18), we can obtain 

γ/r m
r + β h2)32 = 0, γ/r n

r + β h2)33 + 1 = 0    (2.19) 

Hence: 

Theorem 2.6.: In a three-dimensional D-reducible Finsler space F3, for a D-concurrent vector field Xi(x), β and γ satisfy 

equations given by (2.19). 

Taking v-covariant differentiation of 2Ɵ = γ D, we get 2Ɵ//r = γ//r D+ γ D//r, which when compared with equation 

(2.14) leads to 

2β D(1)//r + L-1 D α (mr - nr) = 0,    (2.20) 

From equation (2.20), we easily obtain 

D(1)//0 = 0, D(1)//r m
r + D(1)//r n

r = 0    (2.21) 

Hence: 

Theorem 2.7.: In a three-dimensional D-reducible Finsler space F3, for a D-concurrent vector field Xi(x), scalar D satisfies 

equation (2.21). 

3. WEAKLY D-CONCURRENT VECTOR FIELDS. 

From equation (1.5), by virtue of Dijk mk = ‘D ij and Dijk nk = *Dij, we can get 

‘Dij = D(1)(mi mj – ni nj) + D(3)(mi nj + mj ni)      (3.1) 

and 

*D ij = D(2) ni nj + D(3) mi mj – D(1)(mi nj + mj ni),      (3.2) 

which are symmetric tensors in i and j and satisfy 

Dijk = ‘D ij mk + *D ij nk      (3.3) 
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From equations (3.1) and (3.2), we can get 

‘D i = ‘Dij m
j = D(1) mi+ D(3) ni, ‘’D i = ‘D ij n

j = D(3) mi – D(1) ni    (3.4) a 

*D i = *D ij m
j = ‘’D i, **D i = *Dij  n

j = D(2) ni – D(1) mi,                 (3.4) b 

such that ‘Dij = ‘Di mj + *Di nj and *Dij = ‘’D i mj + **D i nj. 

Now, we shall give the following definitions: 

Def. 3.1.: A vector field Xi(x) in a Finsler space F3 shall be called weakly D-concurrent vector field of first kind if (i) X i
/j = 

- δi
j and (ii) Xi ‘D i = φ(x, y), where φ(x, y) is a non-zero scalar function of x and y. 

From equation (3.4), a and this definition, we can get 

φ(x,y) = β D(1) + γ D(3)      (3.5) 

and 

φ/j = β/j D(1) + β D(1)/j + γ/j D(3) + γ D(3)/j      (3.6) 

Substituting the values of β/j and γ/j from equation (1.8) in (3.6), we get 

φ/j = β(D(1)/j – D(3) hj) + γ(D(3)/j + D(1) hj) – (D(1) mj + D(3) nj)      (3.7) 

which gives 

φ/0 = {β(D(1)/0 – D(3) h0) + γ(D(3)/0 + D(1) h0)},    (3.8) a 

φ/j m
j = β(D(1)/j m

j– D(3) h2)32) + γ(D(3)/ m
j + D(1) h2)32) – D(1)                 (3.8) b 

and 

φ/j n
j = β(D(1)/j n

j– D(3) h2)33) + γ(D(3)/j n
j + D(1) h2)33) – D(3)    (3.8) c 

Hence 

Theorem 3.1.: In a three-dimensional Finsler space F3, for a weekly D-concurrent vector field of first kind, scalar φ 

satisfies equations (3.8) a, b, c. 

Def. 3.2.: A vector field Xi(x) in a Finsler space F3 shall be called weakly D-concurrent vector field of second kind if (i) 

X i
/j = - δi

j and (ii) Xi ‘‘D i = ψ(x, y), where ψ(x, y) is a non-zero scalar function of x and y. 

Substituting the value of ‘’Di from equation (3.3) and using Def. 3.2., we get 

ψ(x,y) = β D(3) – γ D(1)   (3.9) a 

Differentiating equation (3.9) a and using equation (1.8), we get 

ψ/j = β(D(3)/j + D(1) hj) – γ(D(1)/j – D(3) hj) – D(3) mj + D(1) nj                 (3.9) b 

which leads to 

ψ/0 = β(D(3)/0 + D(1) h0) - γ(D(1)/0 – D(3) h0),               (3.10) a 

ψ/j mj = β(D(3)/j mj+ D(1) h2)32) – γ(D(1)/j mj – D(3) h2)32) – D(3)               (3.10) b 
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ψ/j nj = β(D(3)/j nj+ D(1) h2)33) – γ(D(1)/j nj – D(3) h2)33) + D(1)               (3.10) c 

Hence 

Theorem 3.2.: In a three-dimensional Finsler space F3, for a weakly D- concurrent vector field of second kind, ψ satisfies 

equations (3.10) a, b, c. 

Def. 3.3.: A vector field Xi(x) in a Finsler space F3 shall be called weakly D-concurrent vector field of third kind if (i) Xi
/j 

= - δi
j and (ii) Xi **D i = ω(x,y), where ω(x,y) is a non-zero scalar function of x and y. 

Substituting the value of **Di from equation (3.4) in Def. 3.3, we get 

ω(x,y) = γ D(2) – β D(1)              (3.11) a 

Differentiating equation (3.11) a and using equation (1.8), we can obtain 

ω/j = γ(D(2)/j – D(1) hj) – β(D(1)/j + D(2) hj) + D(1) mj – D(2) nj              (3.11) b 

From equation (3.11) b, we can obtain 

ω/0 = γ(D(2)/0 – D(1) h0) – β(D(1)/0 + D(2) h0)               (3.12) a 

ω/j m
j = γ(D(2)/j m

j– D(1) h2)32) – β(D(1)/j m
j+ D(2) h2)32) + D(1)              (3.12) b 

ω/j n
j = γ(D(2)/j n

j – D(1) h2)33) – β(D(1)/j n
j + D(2) h2)33) – D(2)              (3.12) c 

Hence 

Theorem 3.3.: In a three-dimensional Finsler space F3, for a weakly D-concurrent vector field of third kind, ω satisfies 

equations (3.12) a, b, c. 

Using the fact that Xi is a function of x alone, we can observe that Xi
//r = Xp Ci

pr, which by virtue of equation (1.3), 

on simplification shall give 

Xi//r = β{C(1) mi mr – C(2)(mi nr + ni mr) + C(3) ni nr} 

+ γ{C(2) ni nr – C(2) mi mr + C(3) (mi nr + ni mr)}   (3.13) 

Comparing equations (1.9) and (3.13), we can observe that 

α//r – L-1(β mr + γ nr) = 0,              (3.14) a 

β//r + L-1(α mr – γ vr) = (β C(1) – γ C(2)) mr + (γ C(3) – β C(2)) nr              (3.14) b 

γ//r + L-1(α mr + β vr) = (γ C(3) – β C(2)) mr + (β C(3) + γ C(2)) nr              (3.14) c 

Equations (3.14) a, b, c also give us α//0 = 0, α//r m
r = L-1

β, α//r n
r = L-1

γ,    β//0 = 0, β//r m
r = β C(1) – γ C(2)- L

-1(α – γ 

v2)32), β//r n
r = γ C(3) – β C(2) + L-1

γ v2)33γ//0 = 0, γ//r m
r = γ C(3) – β C(2) – L-1(α + β v2)32), γ//r n

r = β C(3) + γ C(2) – L-1
β v2)33 

Taking v-covariant derivative of equation (3.5), we get on simplification 

φ//r = mr{D (1)(β C(1) – γ C(2) – L-1
α) + D(3)(γ C(3) – β C(2) – L-1

α)} 

+ nr{D (1)(γ C(3) – β C(2)) + D(3) (β C(3) + γ C(2))} 
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+ β(D(1)//r – L-1 D(3) vr) + γ(D(3)//r + L-1 D(1) vr)   (3.15) 

From equation (3.15), we can get 

φ//0 = β D(1)//0 + γ D(3)//0,              (3.16) a 

φ//r mr = {D(1)(β C(1) – γ C(2) – L-1α) + D(3)(γ C(3) – β C(2) – L-1α)}  

+ β(D(1)//r mr– L-1 D(3) v2)32) + γ(D(3)//r mr + L-1 D(1) v2)32)              (3.16) b 

φ//r nr = {D(1)(γ C(3) – β C(2)) + D(3) (β C(3) + γ C(2))} 

+β(D(1)//r nr – L-1 D(3) v2)33) + γ(D(3)//r nr + L-1 D(1) v2)33)              (3.16) c  

Hence 

Theorem 3.4.: In a three-dimensional Finsler space F3, for a weakly D- concurrent vector field of first kind, scalar φ 

satisfies equations (3.16) a, b, c. 

Similarly, from equation (3.9) a, we can obtain 

ψ//r = mr{D(3)(β C(1) – γ C(2) – L-1α) – D(1)(γ C(3) – β C(2) – L-1α)} 

+ nr{D(3)(γ C(3) – β C(2)) – D(1)(β C(3) + γ C(2))} 

+ β(D(3)//r + L-1 D(1) vr) – γ(D(1)//r – L-1 D(3) vr)                 (3.17) 

which implies 

ψ//0 = β D(3)//0 – γ D(1)//0              (3.18) a 

ψ//rmr= {D(3)(β C(1) – γ C(2) – L-1α) – D(1)(γ C(3) – β C(2) – L-1α)} 

+ β(D(3)//r mr + L-1 D(1) v2)32) – γ(D(1)//r mr – L-1 D(3) v2)32)              (3.18) b 

ψ//r nr = {D(3)(γ C(3) – β C(2)) – D(1)(β C(3) + γ C(2))} 

+ β(D(3)//r nr + L-1 D(1) v2)33) – γ(D(1)//r nr – L-1 D(3) v2)33)              (3.18) c 

Hence 

Theorem 3.5.: In a three-dimensional Finsler space F3, for a weakly D-concurrent vector field of second kind, ψ satisfies 

equations (3.18) a, b, c. 

From equation (3.11) a, we can obtain 

ω//r = mr{D(2)(γ C(3) – β C(2) – L-1α) – D(1)(β C(1) – γ C(2) – L-1α)} 

+ nr{D(2)(β C(3) + γ C(2)) – D(1)(γ C(3) – β C(2))} 

+ γ(D(2)//r – L-1 D(1) vr) – β(D(1)//r + L-1 D(2) vr)   (3.19) 

which leads to 

ω//0 = γ D(2)//0 – β D(1)//0              (3.20) a 
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ω//r m
r = {D (2)(γ C(3) – β C(2) – L-1α) – D(1)(β C(1) – γ C(2) – L-1α)} 

+ γ(D(2)//r m
r – L-1 D(1) v2)32) – β(D(1)//r + L-1 D(2) v2)32)              (3.20) b 

ω//r nr = {D(2)(β C(3) + γ C(2)) – D(1)(γ C(3) – β C(2))} 

+ γ(D(2)//r n
r – L-1 D(1) v2)33) – β(D(1)//r n

r + L-1 D(2) v2)33)              (3.20) c 

Hence 

Theorem 3.6.: In a three-dimensional Finsler space F3, for a weakly D-concurrent vector field of third kind, ω satisfies 

equations (3.20) a, b, c. 

In a D-reducible Finsler space F3, equation (2.16), by virtue of (3.1) and (3.2) gives  

‘D ij = (D/4) (mi nj + mj ni), *D ij = (D/4)(mi mj + 3 ni nj)              (3.21) a 

while using equations (3.4) a, b, we get  

‘D i = (D/4) ni, *D i = ‘’D i = (D/4) mi, **D i = 3(D/4) ni              (3.21) b 

From these equations, we can obtain  

D(1) = 0, D(2) = 3D/4, D(3) = D/4               (3.21) c 

and also 

X i ‘D i = γD/4, Xi *D i = β D/4, Xi **D i = 3γD/4              (3.22) a 

X i ‘D ij = (D/4)(γ mj + β nj), X
i *D ij = (D/4)(β mj + 3 γ nj)              (3.22) b 

Hence 

Theorem 3.7.: In a three-dimensional D-reducible Finsler space F3, coefficients D(1), D(2) and D(3) are given by (3.21) c, 

while weakly and partially D-concurrent vector fields, respectively, satisfy equations (3.22) a and (3.22) b. 

4. PARTIALLY D-CONCURRENT VECTOR FIELD OF FIRST KIN D.  

Def. 4.1.: A vector field Xi(x), in a three-dimensional Finsler space F3, shall be called partially D-concurrent vector field of 

first kind, if it satisfies 

(i) X i
/j = - δi

j, (ii) X
i ‘D ij = Ɵj(x,y),                   (4.1) 

where Ɵj(x,y) is a non-zero vector function of x and y. 

From equations (3.1) and (4.1), we can get 

Ɵj = D(1)(β mj - γ nj) + D(3)(γ mj + β nj)     (4.2) 

With the help of equations (3.5) and (3.9) a, we can get 

Ɵj = φ mj + ψ nj     (4.3) 

showing that 
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Ɵj lj = 0, Ɵj mj = φ and Ɵj nj = ψ   (4.4) a 

Ɵj/k = (φ/k – ψ hk) mj + (ψ/k + φ hk) nj                (4.4) b 

Ɵj/k lj = 0, Ɵj/k lk = (φ/0 – ψ h0) mj + (ψ/0 + φ h0) nj                (4.4) c 

Ɵj/k mj = φ/k – ψ hk, Ɵj/k nj = ψ/k + φ hk                (4.4) d 

Ɵj/k mk = (φ/k mk – ψ h2)32) mj + (ψ/k mk + φ h2)32) nj   (4.4) e 

Ɵj/k nk = (φ/k nk – ψ h2)33) mj + (ψ/k nk + φ h2)33) nj   (4.4) f 

Hence 

Equations (4.3) and (4.4) show that partially D-concurrent vector field of first kind is a combination of weakly D-

concurrent vector fields of first and second kind.  

Theorem 4.1.: The partially D-concurrent vector field of first kind implies the existence of weakly D-concurrent vector 

fields of first and second kind, but the converse is not true. 

From equation (4.3), we can also obtain 

Ɵj//k = (φ//k – L-1 ψ vk) mj + (ψ//k + L-1 φ vk) nj – L-1 lj Ɵk,     (4.5) 

which leads to 

Ɵj//k lj = - L-1 Ɵk, φj//k lk = (φ//0 mj + ψ//0 nj)   (4.6) a 

Ɵj//k mj = φ//k – L-1 ψ vk, Ɵj//k nj =ψ//k + L-1 φ vk                (4.6) b 

Ɵj//k m
k = (φ//k m

k – L-1 ψ v2)32) mj + (ψ//k m
k+ L-1 φ v2)32) nj – L-1 ljφ   (4.6) c 

Ɵj//k n
k = (φ//k n

k– L-1 ψ v2)33) mj + (ψ//k n
k + L-1 φ v2)33) nj – L-1 lj ψ                (4.6) d 

Hence 

Theorem 4.2.: In a Finsler space F3, for D-partially concurrent vector field of first kind, vector field Ɵj satisfies equations 

(4.5), (4.6) a, b, c, d. 

Def. 4.2.: A vector field Xi(x) in a Finsler space F3, shall be called D-partially concurrent vector field of second kind, if it 

satisfies (i) Xi
/j = - δi

j, (ii) X
i *D ij = φj(x,y),     (4.7) 

where φj(x,y) is a non-zero vector function of x and y. 

From equations (3.2) and (4.7), we can get 

φj = (β D(3) – γ D(1)) mj + (γ D(2) - β D(1)) nj     (4.8) 

which by virtue of (3.9) a and (3.11) a, leads to 

φj = ψ mj + ω nj     (4.9) 

Hence 
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Theorem 4.3.: The partially D-concurrent vector field of second kind implies the existence of weakly D-concurrent vector 

fields of second and third kind, but the converse is not true. 

From equation (4.9), by taking h-covariant derivative, we can easily obtain 

φj/k = (ψ/k – ω hk) mj + (ω/k – ψ hk) nj              (4.10) a 

φj/k lj = 0, φj/k lk = (ψ/0–ω h0) mj + (ω/0 – ψ h0) nj              (4.10) b 

φj/k mj = ψ/k – ω hk, φj/k nj = ω/k – ψ hk              (4.10) c 

φj/k mk = (ψ/k mk – ω h2)32) mj + (ω/k mk – ψ h2)32) nj              (4.10) d 

φj/k nk = (ψ/k nk– ω h2)33) mj + (ω/k nk – ψ h2)33) nj              (4.10) e 

Hence 

Theorem 4.4.: In a Finsler space, F3, for D-partially concurrent vector field of second kind, vector field φj satisfies 

equations (4.10) a, b, c, d, e. 

If we take v-covariant derivative, equation (4.9) will lead to 

φj//k = (ψ//k – L-1
ω vk) mj + (ω//k + L-1

ψ vk) nj – L-1 ljφk              (4.11) a 

which implies 

φj//k lj = - L-1φk,φj//k lk = ψ//0 mj + ω//0 nj              (4.11) b 

φj//k mj = ψ//k – L-1ω vk, φj//k nj = ω//k + L-1ψ vk              (4.11) c 

φj//k mk =(ψ//k mk– L-1ω v2)32) mj + (ω//k mk + L-1ψ v2)32) nj – L-1 ljψ              (4.11) d 

φj//k nk = (ψ//k nk – L-1ω v2)33) mj + (ω//k nk + L-1ψ v2)33) nj – L-1 ljω              (4.11) e 

Hence 

Theorem 4.5.: In a Finsler space F3, for D-partially concurrent vector field of second kind, vector field φj//k satisfies 

equations (4.11) a, b, c, d, e. 

Remark. If we observe equations (1.4), (3.1) and (3.2), we can notice that tensor Dijk = ‘Dij mk + *Dij nk; therefore, it is 

obvious that D-concurrent vector field is a combination of D-partially concurrent vector fields of first and second kind, but 

the converse is not true. 

5. CURVATURE PROPERTIES. 

If D’ ijkr is a tensor based on Dijk and defined as Rastogi [4]: 

D’ijkr = Dirp Dpjk – Dikp Dpjr     (5.1) 

we can easily obtain from Def. 2.1 

X i D’ ijkr = Ɵ (hrp D
p
jk – hkp D

p
jr) = 0.     (5.2) 

Hence 
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Theorem 5.1.: In a three-dimensional Finsler space F3, the curvature tensor D’ijkr with a D-concurrent vector field 

X i(x)satisfies equation (5.2). 

In an earlier paper [7], I have defined a curvature tensor Uijkh as follows: 

Uijkh = Ç(I,j){D jkh/I + Dikr Q
r
jh},     (5.3) 

Multiplying equation (5.3) by Xi, we get on simplification 

X i Uijkh = Xi Djkh/I – Djkh – Ɵ/j (mk mh + nk nh), 

which can be expressed as 

Xi Uijkh = (Xi 1Ai – D(1)) mj mk mh+ (Xi3Ai – D(2)) nj nk nh 

+ (Xi4Ai – D(3))∑(j,k,h) mj mk nh – (Xi2Ai – D(1))∑(j,k,h) mj nk nh 

-Ɵ/j (mk mh + nk nh),     (5.4) 

where 

1Ai = D(1)/I – 3 D(3) hi, 2Ai = D(1)/I + (D(2) – 2 D(3))hi,   (5.5) a 

3Ai = D(2)/I – 3 D(1) hi, 4Ai = D(3)/I + 3 D(1) hi                (5.5) b 

1A0 = 1Ai li, 2A0 = 2Ai li, 3A0 = 3Ai li, 4A0 = 4Ai li                (5.5) c 

It is known that the tensor Uijkh can also be expressed as Rastogi [7]: 

Uijkh = 1Aij mk mh + 2Aij mk nh + 3Aij nk mh + 4Aij nk nh,                   (5.6) 

where 

1Aij = Ç(I,j)[1Ai mj + 4Ai nj + {D(3)(1A0 – 2A0) – 2 D(1)4A0} mj ni]                (5.7) a 

2Aij = Ç(I,j)[4Ai mj – 2Ai nj + {D(3)(4A0 – 3A0) + 2 D(1)2A0} mj ni]                (5.7) b 

3Aij = Ç(I,j)[4Ai mj – 2Ai nj + {D(1)(2A0 – 1A0) + (D(2) – D(3)) 4A0} mj ni]   (5.7) c 

4Aij = Ç(I,j)[2Aj mi – 3Aj ni + {D(1)(3A0 – 4A0) – (D(2) – D(3))2A0} mj ni];                (5.7) d 

therefore, it is also possible to write equation (5.4) in an alternative form 

X i Uijkh = B(1) mj mk mh + B(2) nj nk nh+ B(3) mj mk nh 

+ B(4)(mk mh nj + mh mj nk) – B(5) (mj nk nh + mk nh nj) 

- B(6) mh nj nk – 2 Ɵ/j (mk mh + nk nh),     (5.8) 

where 

B(1) = Xi1Ai + Ɵ 1A0 – D(1) + β(1A0 D(1) + 4A0 D(3)) + γ(4A0 D(1) – 2A0 D(3)), 

B(2) = Xi 3Ai + Ɵ3A0 – D(2) – β(4A0 D(1) + 2A0 D(2)) + γ(3A0 D(2) + 2A0 D(1)), 

B(3) = Xi4Ai + Ɵ4A0 – D(3) +β(4A0 D(1) – 2A0 D(3)) + γ(3A0 D(3) – 2A0 D(1)), 
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B(4) = Xi4Ai + Ɵ4A0 + β(1A0 D(3) – 4A0 D(1)) + γ(4A0 D(3) + 2A0 D(1)), 

B(5) = Xi2Ai + Ɵ 2A0 – D(1) – β(4A0 D(3) + 2A0 D(1)) + γ(3A0 D(1) +2A0 D(3)), 

B(6) = Xi 2Ai + Ɵ 2A0 + D(3) – D(1) + β(1A0 D(1) – 4A0 D(2)) + γ(4A0 D(1) + 2A0 D(2)) 

Hence 

Theorem 5.2.: In a three-dimensional Finsler space F3, the curvature tensor Uijkh, with a D-concurrent vector field Xi(x) 

satisfies equation (5.4) or (5.8). 

The author [7] has defined a tensorVijkh, in F3, as follows: 

V ijkh = L Dijk//h + lh Dijk + lk Dijh + lj Dikh + li Djkh     (5.9) 

From equation (5.9), on simplification by virtue of equations (1.5), (1.6), (2.1) and (2.6), we can obtain 

X i Vijkh = L [β{ 1Ah mj mk – 2Ah nj nk + 4Ah(mj nk + mk nj)} 

+ γ{ 4Ah mj mk +
 3Ah nj nk – 2Ah(mj nk + mk nj)}] 

+ Ɵ(lj hkh + lk hjh + lh hjk) + α Djkh   (5.10) 

which implies 

Theorem 5.3.: In a three-dimensional Finsler space F3, the curvature tensor Vijkh, with a D-concurrent vector field Xi(x) 

satisfies equation (5.10). 
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